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1. INTRODUCTION
Decentralized Partially-Observable Markov Decision Pro-

cesses (Dec-POMDPs) are powerful theoretical models for
deriving optimal coordination policies of agent teams in en-
vironments with uncertainty. Unfortunately, their general
NEXP solution complexity [3] presents significant challenges
when applying them to real-world problems, particularly
those involving teams of more than two agents. Inevitably,
the policy space becomes intractably large as agents coor-
dinate joint decisions that are based on dissimilar beliefs
about an uncertain world state and that involve performing
actions with stochastic effects. Our work directly confronts
the policy space explosion with the intuition that instead of
coordinating all policy decisions, agents need only coordi-
nate abstractions of their policies that constitute the essen-
tial influences that they exert on each other.

As a running example, consider the problem shown in Fig-
ure 1, involving two interacting rover agents (among a team
of several others) that are exploring the surface of Mars. As
shown, the agents perform various tasks (constrained to take
place within a window of execution) with nondeterministic
duration (D) and quality (Q) outcomes, and in performing
their tasks may alter the outcomes of other agents’ tasks.
Here, agent 1 may choose to visit and prepare research site
C, which will (in expectation) make agent 2’s analysis of site
C quicker and more valuable. This problem can be expressed
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Figure 1: Rover Exploration Example.

as a Dec-POMDP whose world state includes features such
as task statuses (each observed by the respective perform-
ing agent) and the rovers’ positions (each partially-observed
by the respective agent). Relevant environmental variables
such as time or sunlight (jointly-observed) may also be in-
cluded. A joint policy that maximizes the team’s expected
accumulation of task qualities constitutes a solution.

To scale Dec-POMDPs to teams of many agents, research-
ers have adopted an approach that decomposes the joint pol-
icy formulation into a series of local policy formulations [1,
2, 4, 5, 6, 7]. The team searches the joint policy space by
forming a set of candidate policies, to which each individ-
ual agent computes its best-response policy that (approx-
imately) optimizes only its local behavior. This decomposed
policy-space search has been effective in generating opti-
mal and near-optimal solutions for restricted classes of Dec-
POMDPs wherein agents can affect each others’ rewards but
cannot affect each others’ observations nor action outcome
transitions (commonly referred to as transition-independent,
observation-independent, reward-dependent problems) [2, 6].
When applied to more general transition-dependent prob-
lems, however, the approach has only been shown to scale
to two-agent teams [1] or to result in joint policies with no
guarantees of optimality or near-optimality [4, 5, 7].

We have developed a framework for scaling up the afore-
mentioned solution approach to teams of more agents in the
context of a general subclass of transition-dependent Dec-
POMDPs without sacrificing optimality. The key idea is to
isolate and explicitly coordinate the agents’ transition influ-
ences. With a well-defined characterization of what it means
for one agent to influence another, agents can form compact
models of nonlocal influence and compute best-responses to
candidate influences instead of candidate policies. And in-
stead of searching through an intractably-large policy space,
agents can search through a more tractable influence space.
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2. TRANSITION-DECOUPLED POMDPS
Among the difficulties involved in solving transition-depen-

dent problems is decoupling the joint model into compact,
efficient local best-response models. In the case that agents’
transitions are independent, it is easy to factor the world
state s into independent local states {si}, each composed of
features affected by, observed by, and affecting the transi-
tions of agent i alone [2]. Transition dependencies like the
one depicted in Figure 1 cause agents’ action consequences
to propagate to other agents’ local states. Agent 1’s prepa-
ration of site C causes changes in the transitions of agent
2’s analysis task. So in order to effectively predict the con-
sequences of its own actions, agent 2 needs to reason about
agent 1’s observed state and expected actions.

By explicitly acknowledging the structured dependence
between individual features, we can reframe our problem
as a collection of POMDP models, each representing a lo-
cal state comprised of locally-observable features, whose
feature sets may overlap. For instance, features such as
site-C-prepared that are controlled by agent 1 but that di-
rectly affect agent 2’s own action consequences are included
in both agents’ models. From the perspective of agent 2,
these will be referred to as nonlocally-controlled (but
locally-modeled) features. In essence, the Dec-POMDP has
been decoupled into a set of local POMDPs tied to one
another by the transition-dependence of their nonlocally-
controlled features: Transition-Decoupled POMDPs (TD-
POMDPs). Aside from being more general than related
models (e.g. ED-DEC-MDPs[1]), the TD-POMPD provides
a natural representation for exploiting locality of transition-
dependent interaction.

3. INFLUENCE-BASED ABSTRACTION
With the TD-POMDP model structure we have defined,

interagent influence may be characterized quite simply as
the expected transition probabilities of nonlocally-controlled
features. Since these probabilities are the only components
of an agent’s local model that may vary with the behavior
of its peers, entire peer policies can be abstractly summa-
rized by the influences they entail, and the corresponding
probabilities incorporated into the agent’s local POMDP
for the purposes of best-response computation. The transi-
tion probabilities associated with a particular influence can
be encoded with a probability distribution Pr (n̄′|f1, f2, ...),
where n̄′ are new values of nonlocally-controlled features
conditioned on previous values of various state features f̄ =
{f1, f2, ...}. In Figure 1, agent 1 influences agent 2 through
the transitions of site-C-prepared. Assuming that agent 1
and agent 2 do not share any other state features (apart from
a global clock signal which we call time), the influence distri-
bution becomes {Pr (site-C-prepared = true|time = t) , ∀t}.

Our influence-based characterization is motivated by the
fact that, while an agent may have many policies to choose
from, it may only be able to exert a small number of unique
influences on its peers. This is undoubtedly true for the ex-
ample in Figure 1, where agent 1 is constrained such that it
can only prepare site C between times 3 and 4. As such, any
two policies that differ only in the decisions made after time
3 will result in identical influences. For some problems, the
feasible influence space is substantially smaller than the
policy space and more efficient to explore. In verifying that
this property holds for a more general set of problems, we

have developed an optimal influence-space search algorithm
and performed empirical comparisons with state-of-the-art
optimal policy search methods on randomly-generated in-
stances. Initial results demonstrate up to two orders of
magnitude speed-up and scalability to 4-agent problems that
could previously only be approximately-solved.

One can envision variations of the example in which the
probability of site-C-prepared would need to be conditioned
on other jointly-observed state features like sunlight. The
probability that agent 1 prepares site C could also be depen-
dent on past values of shared features (since POMDP policy
decisions may be based on entire histories of observations).
We have proven that, for any TD-POMDP, the influences for
the system of agents can be jointly specified with a Dynamic
Bayesian Network (DBN) containing only (variables repre-
senting the past and present values of) shared state features.
With such a representation, our influence-based abstraction
framework has several important benefits:

• Compactness. The size of the influence representation
is a function of the degree to which agents are dependent
on their peers, not of the number of agents in the system.

• Flexibility for Approximation. Since we are repre-
senting influences with probability distributions, there are
a variety of common techniques that we can apply to ap-
proximate the representation of a single influence or to
approximate the space of possible influences (in support
of approximately-optimal solution methods).

• Privacy. Because the DBN contains only shared state
features, these are the only variables whose values agents
need to coordinate over. In contrast to exchanging full
policies, agents can keep private those decisions that do
not impact their peers’ decisions.
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